

Solid State Batteries The role of Li metal voids in cell failure

Dominic Spencer Jolly University of Oxford

THE ALL SOLID STATE LITHIUM BATTERY from liquid to solid electrolytes

 $W_{\rm vol}$ and $W_{\rm grav}$ = Volumetric and Gravimetric energy densities, respectively

Zeier, W. G. & Janek, Nat. Energy 1, 1-4 (2016)

Advantages:

- Safety no flammable organic liquid electrolyte
- Enable use of Li metal anode higher energy density
- Longer life
- Faster charge/discharge

Energy Density	Current Li-ion	Projected ASSBs
Gravimetric (Wh/kg)	250	500
Volumetric (Wh/L)	700	1300

Challenges of the lithium metal anode/solidelectrolyte interface

Chiang, et al. JES, 2018, 165, A3648.

3-electrode cell – separate stripping from plating

- 3-electrode cell allows separation of Li plating from stripping
- Argyrodite Li₆PS₅Cl solid electrolyte:
 - conductivity > 10⁻³ S cm⁻¹
 - soft
- Important to control pressure

3-electrode cycling Li/Li₆PS₅Cl 3 MPa

3-electrode cycling Li/Li₆PS₅Cl 3 MPa

In-situ X-ray computed tomography to reveal void evolution at the interface

Observe void evolution under controlled pressure cycling

Reconstructed virtual cross section from CT

Void formation during cycling

Number and length of voids increase along interface

Li $/Li_6PS_5CI$ interface Current density = 1.0 mA cm⁻² Capacity = 1.0 mAh cm⁻² Pressure = 3 MPa

Influence of void formation on cycling

3-electrode cycling Li/Li₆PS₅Cl 7 MPa

High pressure \rightarrow Conformal interface

- Strong pressure dependence creep of Li metal to interface
- Pressure >> yield strength of Li: 0.81 MPa [1]

[1] Masias, A., Felten, N., Garcia-Mendez, R. et al. *J Mater Sci* (2019) 54: 2585

Implications for failure of solid state batteries

SSBs fail because of critical stripping current (CCS) not plating current (CCP) as thought previously

Above CCS:

Increase in voiding with cycle number - contact loss

- \rightarrow increase in local current density at interface
- → reach critical current for dendrite formation
- \rightarrow dendrite propagating through solid electrolyte

Acknowledgements

Prof. Peter Bruce Prof. James Marrow Dr. Jitti Kasemchainan Gareth Hartley

Dr. Paul Adamson Dr. Stefanie Zekoll Ziyang Ning

Li/Li₆PS₅Cl Interfacial Stability

2-electrode Li/Li₆PS₅Cl/Li cells

Current > critical stripping current Current < critical plating current cell failure

Current < critical stripping current

increasing **polarization** followed by **short circuit**

 $J_{Li \ diffusion} + J_{Li \ creep} < J_{Li + \ migration} \rightarrow cell \ failure$

Voltage vs charge passed for a 3-electrode cell on Li metal plating and stripping at the Li / Li_6PS_5CI interface at a pressure of 0.5 MPa and a current density of 1.0 mA·cm⁻² SEM cross-section of the Li / Li_6PS_5CI interface after the final stripping.

3-electrode cycling Li/Li₆PS₅Cl 7 MPa 2 mAcm⁻²

At 7 MPa and 2 mA cm⁻²: $J_{Li \text{ diffusion}} + J_{Li \text{ creep}} < J_{Li + \text{ migration}} \rightarrow \text{cell failure}$

Critical current determination

CCS < CCP